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Abstract 

With the fast evolution of medical imaging study, a great interest in skin cancer detection has been investigated with numerous com-

puter algorithms. Generally, skin lesions are examined with a limited quantity of ground truth labeling. The most important part of the 

medical image’s detection is calculating the localization function which is normally evaluated on the Intersection over Union threshold 

(IoU). It helps to locate the lesion accurately to collect dominant features of the skin lesion. In this work, an object localization for 

skin lesion detection has been proposed using SSD- Mobilenet model on ISIC 2018 as a training and testing datasets. To evaluate the 

detection performance, the detection process has been achieved using two different methods; a real-time mobile application of Android 

camera (Galaxy S6), and Jupyter Notebook of TensorFlow Object Detection Application Program Interface (API). The total confidence 

scores detection quality (total mAP) is 96.04% with a total loss of 0.78. Experimental results reach 99% of detection accuracy when 

using Jupyter Notebook, while it reaches 100% with Android detection. The experiments have been executed on Ubuntu 16.04LTS 

GTX1070 @ 2.80GHZ x8 system.  
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1 Introduction  

Over the last decades, the rate of skin cancers exceeds the communal can-

cer cases for lung, breast, prostate, and colon as the skin cancer foundation 

had reported. In a recent medical trial, dermatologists mostly check the 

patients by visual analysis with physical measurements parameters which 

known as dermatoscope to identify the cases. Practically, it is hard to iden-

tify the type of skin lesions by bare eyes according to self-vigilance and 

medical check. Dermoscopy is not supposed to let imagining of skin sur-

face by the light expanding device and immersion fluid.  Usually, it is one 

of the highest used imaging ways in dermatology, and the diagnosis rate 

has been enhanced.  

Nowadays, deep learning has grown so popular in medical imaging study 

as well as classification of skin lesions. In 2017, International Skin Imag-

ing Collaboration led the ISBI challenge to get the best performance 

measures for skin lesion segmentation. Though, this challenge had fo-

cused on segmentation and skin classification, not skin lesion detection. 

Objects detection using a mobile camera has been applied in many pur-

poses, like video surveillance, object stability, and collision revocation. 

Some techniques have been investigated to detect tracing objects from a 

non-stable platform. However, these techniques need to know the move-

ment measurements of the camera, which is mostly not easy to obtain or 

are unable to detect an object if the size of the tracking object is small. In 

this work, a new detection application for ISIC 2018 skin dataset using an 

Android phone’s camera has been presented. The software is based on 

Deep learning model running on TensorFlow’s Object Detection API us-

ing the Android platform. A strong tool gives it straight to construct, train, 

and use object detection models. Generally, training a whole convolu-

tional network from scratch consumes a lot of time and required a huge 

dataset. So, this problem can be fixed by using the power of transfer learn-

ing with a pre-trained model using the TensorFlow API.  

Recently, an Android platform has been wildly used to the object recog-

nition applications, which works on images taken through a built-in cam-

era. Android is growing to be the generally used platform amongst 

smartphone technologies as a monitor. The user can get the correct lesion 

detection from the skin by which the required lesion is noticeable upon the 

detected skin area.  

The main contributions of this paper include:  

1) Proposing the use of SSD-Mobilenet for training mode on skin lesion 

images of ISIC Challenge 2018 dataset and monitoring the progress of our 

training and evaluation jobs using Tensorboard (Classification loss, local-

ization loss, total loss, and detection accuracy).  

2) Identify a candidate checkpoint to export (typically the most recent) and 

store it.  

3) Run the detection process on a few untrained images using two different 

ways; by trying out the Jupyter notebook, and by developing an Android 

camera app, which uses the TensorFlow (TF) Detect app in mobile devices 

for real-time detection and localization of skin lesions. 

http://www.ibii-us.org/Journals/AJAR/
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Generally, diagnosing the dermoscopic images requires multi-stages, 

which include image pre-processing, image segmentation, features extrac-

tion, and classification as many of the state-of-the-art had done. The main 

point of those challenges was focused on segmentation and classification. 

A Region of interest (ROI) detection was demonstrated importance in 

medical image analysis. It is defined as a bounding box circumscribed the 

skin lesion. Moreover, by using image manipulation methods, scientists 

augmented the data to overcome data deficiency in the deep learning area. 

Tschandl et al. used different magnifications and angles that yield normal 

data-augmentation for HAM10000 dataset. Though, it means difficult and 

redundant data for the same skin lesion. Extracting 437 features was the 

main method in (M. Celebi 2007), which including shape, color and tex-

ture feature, leading into selecting 18 dominant features. At that point, a 

support vector machine (SVM) was used to recognize the lesions. While 

in (F. Xie 2017) three features were extracted; color, texture, and border 

features and a neural network ensemble model for the lesion classification. 

In those work, preprocessing of the original image was complex. Never-

theless, their simplification capability is weak and frequently does not 

have the ability to achieve a good multi-classification task.  

Recently, deep learning techniques have accomplished outstanding per-

formance in respect of classification tasks. One of the common deep learn-

ing approaches is the convolutional neural network (CNN). Basically, it is 

multi-layer nonlinear neural networks, which can fully exploit the inherent 

structure of high dimensional data and obtain dominant features from the 

original data naturally. In (S. Singh 2016), the data set was initially pre-

processed using K-mean Clustering algorithm. This preprocessing helped 

to increase the rate of restructuring by eliminating all inappropriate tex-

ture. The preprocessed data was used to extract the features. In (H. Zhou 

2017), a new multi-classification technique based on convolutional neural 

network (CNN) was used for dermoscopy images. A CNN had been 

trained on more information than the original remaining structure. Trans-

fer learning had been used to train the designed network. In (M. Goyal 

2018), they use two object localization meta-architectures for end-to-end 

ROI skin lesion detection in dermoscopic images. Faster-RCNN-

InceptionV2 and SSD-InceptionV2 were trained on the ISBI-2017 train-

ing dataset and evaluate the performances on ISBI-2017 testing set, PH2 

and HAM10000 datasets. It is worth to mention that our work in (Fadwa 

2018) focuses on detecting human health-related actions (HHRA) from a 

video sequence using an Android camera. Two promising new approaches 

for HHRA detection has been proposed: SSD Mobilenet and Faster RCNN 

Resnet models. The proposed methods are estimated on the NTU RGB+D 

dataset. 

2 Methods 

In this paper, the proposed system goals to detect skin lesions by using the 

Android camera and TensorFlow Object Detection Notebook (Jupyter 

software). The dataset splits into training and testing dataset. First, all the 

dataset is labeled by drawing a bounding box (ground truth) around the 

skin lesion. Then, save them as an XML file. The XML file converts to a 

CSV file, and TensorFlow converts all these files into “TFRecords” to 

make it readable for TensorFlow application. The system uses SSD-

Mobilenet as a per-trained model of TensorFlow object detection API. 

During training, model evaluation can be monitored to see the progress of 

the training and evaluation jobs using Tensorboard. Fig.1 shows the block 

diagram for the proposed system.  

 

Fig .1 Basic Block Diagram for proposed the HHRA model. 

2.1 Tensorflow Object Detection API 

TensorFlow Object Detection API’s is a package to determine object de-

tection applications. It is a technique of detecting real-time objects in an 

image. The Tensorflow Object Detection API library includes multiple 

out-of-the-boxes object detection constructions like SSD (Single Shot De-

tector), Faster R-CNN (Faster Region-based Convolutional Neural Net-

work), and R-FCN (Region-based Fully Convolutional Networks).  

In 2016, A Single Shot Multibox Detector (SSD) has been launched by 

investigators from Google. It is a quick single-shot object detector for sev-

eral classes. Its structure is based on one feed-forward convolutional net-

work. That leads to adopt classes straightforward and anchor stabilizer 

with no need to an additional stage for each proposal classification proce-

dure. The basic feature of SSD is the employ of multi-scale convolutional 

bounding box outputs connected to various feature maps at the highest of 

the network. The main structure of SSD is extracted from VGG-16 struc-

ture. VGG-16 is applied as the core network since it has an active perfor-

mance in high-quality image classification functions and transfer-learning 

training so as to boost the results. The bounding box method of SSD is 

determined by Szegedy’s project on MultiBox, and an Inception mode 

convolutional network is used. The loss function of the MultiBox includes 

two important parts that achieved their path to SSD. First is the confidence 

loss that estimates how confident the system in determining the bounding 

box. While the second part is location loss, which measures the distance 

of the network’s predicted bounding boxes from the ground truth ones 

during the training mode.  

For the location loss calculation, SSD uses smooth L1-Norm. Concerning 

the classification process, the SSD completes object classification. Thus, 

for each predicted bounding box, groups of N classes predictions are de-

termined for each possible class in the dataset. Besides, feature maps are 

a description of the dominant features of the image at several scales. Later, 

working MultiBox on multiple feature maps increases the probability of 

any object whether big or small that is meant to be finally localized, de-

tected, and correctly classified. 

2.2 TensorFlow in Android 

The Android model of the TensorFlow library includes four applications, 

which they are TF Detect, TF Classify, TF Stylize, and TF Speech. All of 

them use the same primary code. These applications take input as a real-

time image or video when the Android's camera is on. In this work, TF 



 A. M. Taqi et al. / American Journal of Advanced Research 2019 3(1) 6-12 

8 

 

Detect app has been used. The main code of the TensorFlow is written in 

C++ in order to build the process for Android. Besides, JNI (Java Native 

Interface) has been used to call the C++ functions, for instance, load-

Model, obtain predictions, etc (B. Readme 2018). Two main files will be 

built, a shared object (.so) file, that is a C++ compiled file, and a jar file 

that will contain JAVA API, which calls for the native C++. Then, the 

JAVA API will be called to make the processes accomplished simply. 

Also, there are software, dependencies, and packages required: Android 

Studio, Android SDK and Android NDK.   

2.3 Skin-Lesion Datasets and Preprocessing 

Images of the skin are the most easily captured form of a medical image 

in healthcare, and the domain shares qualities to other standard computer 

vision datasets, serving as a natural bridge between standard computer vi-

sion tasks and medical applications. 

For this work, we used a publicly available dataset for skin lesions that are 

ISIC-2018 Challenge (Skin Lesion Analysis Towards Melanoma Detec-

tion” grand challenge datasets). The lesion images come from the 

HAM10000 Dataset and were acquired with a variety of dermatoscope 

types, from all anatomic sites (excluding mucosa and nails). Every lesion 

image contains exactly one primary lesion; other fiducial markers, smaller 

secondary lesions, or other pigmented regions may be neglected.  The in-

put data are dermoscopic lesion images in JPEG format. 

It is needed to have a ground truth of what exactly the object is. The ground 

truth is drawing a bounding box around the skin lesion as shown in Fig.2. 

Each lesion is tagged as a name of (skin cancer). LabelImg software saves 

the annotations as XML-files in PASCAL VOC format, which is prepared 

for creating TFRcords (Tensor Flow record format). Each dataset requires 

a label map connected with it, which represents a mapping from string 

class names to integer class IDs. Label maps should always start from ID1. 

In this work, there is one ID related to skin cancer class. Once all skin 

images are labeled, the dataset splits into two different groups; training 

and testing dataset. 

2.4 Feature Extraction 

Feature Extraction is a main necessity with the purpose of representing an 

object. A collection of features can represent an object by as a feature vec-

tor. This feature vector is used to distinguish objects and classify them. In 

image classification and object recognition systems, feature extraction is 

a vital section. It includes mapping the image pixels into the feature space. 

In this work, Mobilenet has been selected as feature extractors which is 

the most common in computer vision area. 

Mobilenet has been used for active inference in many mobile vision func-

tions. The depth wise separate convolution is the main part of the Mo-

bilenet network structure. It is a progressive state of the inception unit, 

where parted spatial convolution is used to each channel. The 1x1 convo-

lution with all the channels is applied to combines the output designated 

as pointwise convolutions. Consequently, the separation in depth wise and 

pointwise convolution rise the efficiency performance also. It improves 

accuracy, whereas a cross-channel and spatial correlations mapping is 

learned autonomously. MobileNet has been presenting to reach an accu-

racy equal to VGG-16 on ImageNet with select 1/30th of the design cost 

and model size. Its internal structure set is depth wise separable convolu-

tions that factorize a typical convolution for a depth wise convolution, and 

a 1 × 1 convolution eventually. Practically, that would reduce the couple 

of the calculation cost and the number of hyper-parameters. 

 

Fig. 2 Sample of skin lesion surrounded by a bounding box 

The setting of TensorFlow object detection API for SSD-Mobilenet model 

has been adjusted the weights by an abbreviate normal distribution with a 

standard deviation of 0.03. The momentum _optimizer_value is 0.9 with 

batch size equals 32, and the intial_learning_ rate is 0.003 with a learning_ 

rate_ decay of 0.9997. A loss function uses the sigmoid function for clas-

sification loss, while the localization loss uses the smooth L1 function. 

Also, ReLU function is used as the activation function. 

2.5 Testing (Detection) 

To authorize the model’s performance, many investigations have been ac-

complished on the ISIC 2018 datasets. In this work, the detection process 

is implemented in two ways; TensorFlow Object Detection Notebook and 

the Android camera. To perform the detection process in both ways, the 

model must be exported as a static inference graph trained on the skin 

lesions, as well as the corresponding label map. The TensorFlow object 

detection API library provides the script, which named export_infer-

ence_graph with using the latest checkpoint number at the last step that 

stopped the training process. It has used the 16.04LTS 

GTX1070@2.80GHZ x8 system to run the object detector.  

The loss functions for the model include two functions; classification and 

localization as following: 

𝑢: True class label, 𝑢 𝝐 0,1, . . .., 𝐾; by convention, the catch      

all background class has 𝑢=0. 

 

𝑝: : Discrete probability distribution (per RoI) over k+1 classes: 

 𝑝 = (𝑝0, … , 𝑝k)    computed by a softmax over the k+1 

   outputs of a fully connected layer.   

𝑣: True bounding box 𝑣 = ( 𝑣𝑥,𝑣𝑦 , 𝑣𝑤 , 𝑣ℎ). 

 

𝑡𝑢 : Predicated bounding box correction, 𝑡𝑢  = (𝑡𝑥
𝑢,𝑡𝑦

𝑢,𝑡𝑤
𝑢 ,𝑡ℎ

𝑢). 

The loss function sums up the rate of classification and bounding box pre-

diction:  ℒ = ℒ𝑐𝑙𝑠 + ℒ𝑏𝑜𝑥. For “background” RoI,  ℒ𝑏𝑜𝑥 is avoided by the 

indicator function 1[𝑢 ≥ 1] , described as: 

                                                 1[𝑢 ≥ 1] =  {
1     𝑖𝑓 𝑢 ≥ 1

 0    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                                  (1) 

The overall loss function is: 

        ℒ(𝑝, 𝑢, 𝑡𝑢 , 𝑣) =  ℒ𝑐𝑙𝑠 (𝑝, 𝑢) + 1[𝑢 ≥ 1] ℒ𝑏𝑜𝑥  (𝑡𝑢, 𝑣)          (2) 
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   ℒ𝑐𝑙𝑠  (𝑝, 𝑢) =  − 𝑙𝑜𝑔 𝑝𝑢       (3) 

 ℒ𝑏𝑜𝑥(𝑡𝑢, 𝑣) =  ∑ 𝐿1
𝑠𝑚𝑜𝑜𝑡ℎ

𝑖𝜖 {𝑥,𝑦,𝑤,ℎ} (𝑡𝑖
𝑢 − 𝑣𝑖)    (4) 

The bounding box loss 𝐿𝑏𝑜𝑥 measure the difference between 𝑡𝑖
𝑢and𝑣𝑖 ap-

plying a robust loss function. 

2.6 Quantitative Performance Measures  

2.6.1    Evaluation metrics 

The most important evaluation metrics in our work are precision, recall, 

F1-score and mean average precision (mAP). Precision shows how valid 

detection outcomes are, (Eq.5) indicates these metrics as following: 

                                𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃/((𝑇𝑃 + 𝐹𝑃)                        (5) 

     where TP = true positive, FP = false positive. 

Recall: represents the percentage of objects, which are detected including 

the detector. (Eq. 6):  

                               𝑅𝑒𝑐𝑎𝑙𝑙 =   𝑇𝑃/((𝑇𝑃 + 𝐹𝑁)                           (6) 

     

where FN = false negative. 

2.6.2 Intersection over Union 

Intersection over Union (IoU) is an accuracy estimation parameter show-

ing how the object detector is accurate on a related database. For object 

localization, it is essential to fix the system prediction about the location 

of the exact object that is supposed to be detected as shown in Fig.3. Usu-

ally, this also includes sketching a bounding box around the object of in-

terest. Then, the localization function is estimated on the Intersection over 

Union threshold (IoU). 

The TensorFlow Object Detection API uses “PASCAL VOC 2007 met-

rics”, and a location estimated instance is defined as a TP, whereas Inter-

section over Union (IoU) is above 50%. One object can be related to one 

bounding box at a time. Though, if some bounding boxes are predicted for 

an object, one is viewed as TP and the others as FP. Nevertheless, if an 

object is with no predicted bounding box, which is related to it, it is pre-

dictable as an FN. 

2.6.3 Mean Average Precision (mAP) 

The mAP is the result of precision and recalls “precision-recall” 

calculations on determining bounding boxes. It is a suitable means of how 

good the network to choose the objects of interest. The larger the score of 

the mAP, the more precise the detection system. Mostly, the mAP 

improves “precision-recall” curve. Then, for each guess, a recall rate and 

a precision rate is determined. The average precision (AP) is the 

predictions’ average estimated over several thresholds. It is a 

determination to reach characteristics of the detector in a single number. 

In this work, the AP curves for the skin lesions class based on the per-

trained models ( SSD-Mobilenet) have been shown in Figs.4-5. A vertical 

axis denotes the AP values, whereas a horizontal axis denotes the steps 

(epochs). 

 

Fig. 3 An instance of calculating IoU for different bounding boxes. 

3 Results 

3.1 Training and Evaluation 

TensorFlow provides many configuration documents which can be 

reformed according to a new training set. A TensorFlow’s imagining 

platform, named as TensorBoard, can be used to observe the results of the 

training and the evaluation stages. It can observe several parameters, for 

instance, the training time, total loss, number of steps and much more. In 

addition, TensorBoard can be run during the system training mode, which 

allows you to monitor the progress of your training and evaluation jobs to 

check that the training performance is going in the correct way. The 

system checkpoint file is applied as a start point for the fine-tuning 

process. 

Throughout the evaluation, the mAP indicates the trained model ratio of 

accurate predictions for our label. While the IoU is specific to object 

detection models. This measurement signifies the overlap between the 

bounding box and the ground truth-bounding box, defined as a percentage. 

The mAP graph is an average of the percentage of correct bounding boxes 

and labels of the model restarted with “correct” relating to bounding boxes 

that had 50% or more overlap with their corresponding ground truth boxes. 

During the training developments, the main aim is to decrease total loss as 

minimum as can be (less than 1). Tensorboard diagrams for AP, mAP, 

classification loss, localization loss, and total loss for SSD-Mobilenet 

model are shown in Figs 4, 5, 6, 7 and 8. The training process should be 

completed when the total loss reduces as the iterations/steps(epochs) are 

increasing. The parameter num_steps describe how many training steps 

needed before ending the training process. It based on the dataset size with 

how long the investigator desires to do the training of the model. The 

applied metric is a mean average precision (mAP). It is a single number 

represents the area under the precision-recall curve. The mAP is a measure 

of how good the model in generating a bounding box that has at least a 

50% intersection with the ground truth bounding box in the test dataset. 

The mAP value got to higher confidence at 0.5IoU. The higher the mAP 

values, the higher the detector performance.  

The classification loss curve in Fig.6. show the validation of skin lesion 

class which is classified and matched with the earlier trained class. The 

lower the classification loss that decreases to zero, the higher the 

classification and detector accuracy. Fig.7. shows the result of the 

localization loss curve. It defines the predicate bounding box that matches 

with the ground-truth bounding box. Table 1 reviews all the parameters 

(mAP, Total loss, Classification loss, Localization loss) of the training and 
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evaluation processes, and the number of the steps with the consumed time 

to achieve these requirements. 

Table 1. Benchmark results of the cascade oscillators model 

Steps mAP Classification loss Localization loss Total loss   

8.622k 0.96    -    -    - 

11.62k   - 0.45 0.48 0.78 

 

 

Fig. 4. Maximum AP curves at 0.5 IoU for skin cancer lesion at 8.622k steps. 

 

Fig. 5. Maximum mAP at 0.5 IoU at 8.622k steps. 

 

Fig. 6. Minim classification loss for skin cancer class. 

 

Fig. 7. Minim localization loss for skin cancer class. 

 

Fig. 8. Minim total loss for skin cancer class. 

3.2 Detection Results 

To authenticate the detection performance for skin cancer detection, 
inclusive investigations have been completed on the datasets. To achieve 
the highest expectable detection accuracy, groups of skin lesion images 
are tested. In this work, the detection process is executed using two 
different ways; TensorFlow Object Detection Notebook and the Android 
camera. To do the detection process in both ways, the system must be 
exported as a static inference diagram trained on the skin lesion dataset, 
along with the equivalent label map. The TensorFlow object detection API 
library delivers the script, named export_inference_graph using the 
newest checkpoint number at the last step which the training process has 
been stopped. It has been used the 16.04LTS GTX1070@2.80GHZ x8 
system to run the object detector on ISIC 2018 dataset.  

3.2.1 TensorFlow’s Object Detection Notebook 

When the supplies are finished, the detection process is done by using 
TensorFlow’s Object Detection Notebook. The detection results are 
exposed in Fig.9. The results have shown such a high detection accuracy 
(99% and 100%). 

3.2.2 TensorFlow in Andriod  

The model will be exported to an Android phone (Galaxy S6). The testing 
has been done by capturing the skin lesion from the phone’s camera and 
bounding detection boxes with the name of the skin cancer class and 
detection percentage accuracy as described in Fig.10.   
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Fig. 9. Samples of the detection results that used TensorFlow object detection note-

book technique. 

 

Fig. 10. Samples of the detection results using Android camera. 

4 Discussion 

In this paper, skin cancer lesions have been detected using TensorFlow 
object detection API system. For training the dataset, a new pre-trained 
model (SSD-Mobilenet) has been used. The average precision (AP) is the 
average of class predictions calculated over numerous thresholds. While 
the detection accuracy (mAP) is a high rate with different num_steps at 
0.5IoU. This is because that the system deals with the skin images, so it 
needs a long time to train the whole samples of each image. The 
num_steps number directly affects the size of the training dataset. 
Localization loss denotes to the predicted bounding box when matches the 
ground-truth bounding box. Nevertheless, when the loss cost is low, and 
the Intersection over Union is high, that indicates that the bounding box is 
in the exact location of the lesion. The classification loss illustrates the 
efficiency of skin lesion class which is matched with the prior trained 
class. The lower the classification loss values, the perfect the classification 
accuracy is, which leads to the high-level performance of the detector. The 
Android detection results and the detection results of TensorFlow Object 
Detection Notebook have shown high performance. 

5 Conclusion 

In Conclusion, a new detector system was settled for skin cancer lesions 
using two methods; TensorFlow object detection API notebook, and Ten-
soFlow in Android using the phone's camera. The used data was extracted 
from the International Skin Imaging Collaboration “ISIC 2018”. The de-
tection model was trained and estimated based on SSD-Mobilenet in the 
training mode. According to the results, the mAP total achieved 96.04%, 
and the lowest error was calculated through both losses of classification 
and localization and it was less than 0.5. Besides, high-performance effi-
ciency has been enhanced by using the smartphone. As future research, 
we plan to use Cloud computing to reduce training and evaluation time. 
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