Calculation the Energy of the intra-shells for the Ground and minimum Excited States of Carbon Atom.

Ahmed Mesehour Ali AL-Mehsenauy ${ }^{1}$, Mustafa Kamil Khaleel ${ }^{1}$ and Ali Abid Abojassim ${ }^{2 *}$
${ }^{1}$ Ministry of Education, Iraq, ${ }^{2}$ Department of Physics, Faculty of Science, University of Kufa, Iraq
*Email: ali.alhameedawi@uokufa.edu.iq
Received on July 13, 2019; revised on November 03, 2019; published on November 09, 2019

Abstract

In the present study, the atomic properties of carbon atom for ground state ${ }^{3} \mathrm{P}$ as well as the minimum excited states $\left({ }^{1} \mathrm{D}\right.$ and $\left.{ }^{1} \mathrm{~S}\right)$ for intra-shells ($1 \mathrm{~s}, 2 \mathrm{~s}$ and 2 p) have been calculated through the use of Hartree-Fock wave functions. These include radial density function, one-particle of one-particle and expectation values with inter-particle, density functions with inter-particle, expectation values of energies, the electronic density at nucleus and the nuclear magnetic shielding constant. Each plot in the present study has been normalized to unity. The results have been collected statistically through the use of 'MathCad 14' and the atomic properties have been measured in atomic units.

1 Introduction

The actual beginning of quantum mechanics with Erwin Schrodinger in 1926 which produced wave mechanics and Schrodinger equation to give a good explanation for atomic and subatomic particle's motion. Schrodinger regarded the electron as having wave properties and the equation governs the electron is Schrodinger equation. Wave mechanics and Schrodinger equation give a large motivation to know the atomic structure. The one-particle problem (i.e. hydrogen atom) can get the exact energy and wave function but when the electrons become ≥ 2 the problem becomes difficult and when electrons increase, the problem becomes impossible to be solved (assumption the nucleus is a point charge with infinite mass). Because the electrons are indistinguishable particle (negates the existence of trajectories) [1]. The total wave function depends on all coordinate of electrons, so there will be a huge number of variables $10^{3 N}$ where N number of electrons such as for iron $\mathrm{N}=26$, the total wave function contains 10^{78} variables, so Schrodinger equation should be solved by a good method that uses approximation [2]. One of the best approximation methods used for this purpose is Hartree-Fock Self-Consistent Field (HFSCF), the fundamental point of the (HF-SCF) is through having a guess initially at the orbitals of spin, the average fields shown through every electron could be calculated and get the Schrodinger equation solved for a new group of orbitals of spin. Having such new orbitals, a new field could be obtained and conduct the procedures again till self-consistency is achieved till the fields have no longer changes [3].

2 Methods

In multi-electrons system to solve Schrodinger equation, one has to find the Hamiltonian operator which depends on wave function as Schrodinger equation

$$
\begin{equation*}
\widehat{H} \psi_{i}=E_{i} \psi_{i} \tag{1}
\end{equation*}
$$

As \widehat{H} represents Hamiltonian operator, E refers to eigenvalue while ψ_{i} remarks the wave function. In the same time, the wave function depends on Hamiltonian operator "problem". Hartree in 1927 produced approximation method to solve this "problem" by following the procedure: every electron has movement in the possible field of the nucleus plus the $\mathrm{N}-1$ of the rest of electrons. This indicates that the he electrons are moving independently. The total wave function is set as [4].
$\Psi_{\left(r_{1}, r_{2} \ldots, r_{N}\right)} \quad=\quad \varphi_{1\left(r_{1}\right)} \varphi_{2\left(r_{2}\right)} \quad \ldots \quad \varphi_{N\left(r_{N}\right)}=\prod_{i=1}^{N} \varphi_{i}\left(r_{i}\right)$ (2)

Where r_{i} represents spatial coordinate to electrons. Equation (2) does not obey the Pauli exclusion and it does not take into account the antisymmetric wavefunctions. Fock does this.
$\Psi_{H F\left(x_{1}, x_{2} \ldots, x_{N}\right)}=\widehat{A} \prod_{i=1}^{N} \varphi_{i}\left(x_{i}\right)$
Where x_{i} are spin orbitals contain four quantum number $\left(n, l, m_{l}, m_{s}\right)$ and four coordinate $(r, \theta, \emptyset, s)$ for single electron, s is spin of electrons. \widehat{A} is antisymmtric operator or antisymmtriser, written as [5].

$$
\begin{equation*}
\hat{A}=\frac{1}{\sqrt{N!}} \sum_{p}(-1)^{p} \hat{P} \tag{4}
\end{equation*}
$$

Where \hat{P} is an exchange operator or permutations operator in relation to interchange of the electron coordinates i as well as j. The anti-symmetry of eigenfunction can be written [6].

$$
\hat{P} \psi=(-1)^{p} \psi \quad \text { (5) Where }(-1)^{p}= \pm 1 \text { for even or }
$$ odd permutations.

The whole function of N -electron wave made up as the product that characterized as being anti-symmetrized to spin orbital written as slater determinant [7].
$\Psi_{H F}\left(x_{1}, x_{2}, \ldots, x_{N}\right)=(N!)^{-\frac{1}{2}}\left|\begin{array}{ccc}\varphi_{\mathrm{i}}\left(\mathrm{x}_{1}\right) & \ldots & \varphi_{\mathrm{j}}\left(\mathrm{x}_{1}\right) \\ \vdots & \ddots & \vdots \\ \varphi_{\mathrm{i}}\left(\mathrm{x}_{\mathrm{N}}\right) & \ldots & \varphi_{\mathrm{j}}\left(\mathrm{x}_{\mathrm{N}}\right)\end{array}\right|$
Slater has set the basis that is composed of a group of functions so called "slater-type orbitals" (STO's), that are as follow [8].

$$
\begin{equation*}
\gamma_{n l m}(r, \theta, \varnothing)=N r^{n-1} \exp (-\xi r) Y_{l, m l}(\theta, \varnothing) \tag{7}
\end{equation*}
$$

Where N is normalized factor and equal

$$
N=\frac{(2 \xi)^{n+\frac{1}{2}}}{((2 n)!)^{\frac{1}{2}}}
$$

(8) As n refers to principle quantum
number, r refers to the space between the electron and atomic nucleus, $Y_{l, m l}$ indicates the spherical harmonic, while (ξ) represents the orbital exponent. One could describe the Hartree-Fock spin orbitals as it indicates the linear combinations of slater orbitals from function known as basisfunctions set as [9]

$$
\begin{equation*}
\varphi_{H F}=\sum_{i=0}^{k} c_{i} \gamma_{i} \tag{9}
\end{equation*}
$$

Where c_{i} indicates the constant coefficient and γ_{i} refers to the slater orbitals. From equation (9) the linear combination of slater orbitals become $\varphi_{H F}=\sum_{i=0}^{k} c_{i} \frac{\left(2 \xi_{i}\right)^{n_{i}+\frac{1}{2}}}{\left(\left(2 n_{i}\right)!\right)^{\frac{1}{2}}} r^{n_{i}-1} \exp \left(-\xi_{i} r\right) Y_{l, m l}(\theta, \emptyset)(10)$

1. The atomic properties

3.1: The density of two-particles $\boldsymbol{\Gamma}\left(\boldsymbol{x}_{\boldsymbol{m}}, \boldsymbol{x}_{\boldsymbol{n}}\right)$

It has every important information that is required to conduct calculation to the energy as well as several properties of the atom [10]. Written as
$\Gamma_{H F}\left(x_{m}, x_{n}\right)=\frac{N(N-1)}{N} \iint\left|\psi_{\left(x_{m}, x_{n}, x_{p}, \ldots x_{q}\right)}\right|^{2} d x_{p} \ldots d x_{q}$
Where x_{n} indicates the combined space as well as the spin coordinate of electron n and $d x_{p} \ldots d x_{q}$ refers to the integration summation over every N-electron but m while n. $\frac{N(N-1)}{N}$ represents the electron pairs' number, which can be obtained by the integration of the second-order reduced density function.

3.2: Radial Density function $D\left(r_{1}, r_{2}\right)$ of Two-Particle

The probability density that is related to find the electron 1 at r_{1} as well as electron 2 at r_{2} from simultaneous nucleus is set as [11]
$D\left(r_{1}, r_{2}\right)=\iint \Gamma\left(r_{1}, r_{2}\right) r_{1}^{2} r_{2}^{2} d \Omega_{1} d \Omega_{2} d \sigma_{1} d \sigma_{2} \quad$ (12)

3.3 Radial density Function $\boldsymbol{D}\left(\boldsymbol{r}_{1}\right)$ of One-Particle Radial Density

The probability density functions that are related with having certain electron at a distance r_{1} as well as $r_{1}+d r_{1}$ from the coordinated origins (nucleus) formulated in [12]

$$
\begin{equation*}
D\left(r_{1}\right)=\int_{0}^{\infty} D\left(r_{1}, r_{2}\right) d r_{2} \tag{13}
\end{equation*}
$$

3.4: expectation value $\left\langle r_{1}^{n}\right\rangle$

of One-particle

One could calculate it by having the below formula [13]

$$
\begin{equation*}
\left\langle r_{1}^{n}\right\rangle=\int_{0}^{\infty} r_{1}^{n} D\left(r_{1}\right) d r_{1} \tag{14}
\end{equation*}
$$

3.5: Standard deviation Δr_{1}

It is differentiated from the expectation value and set as [14]

$$
\begin{equation*}
\Delta r_{1}=\left[\left\langle r_{1}^{2}\right\rangle-\left\langle r_{1}\right\rangle^{2}\right]^{1 / 2} \tag{15}
\end{equation*}
$$

3.6: inter-particle distribution functions $\boldsymbol{f}\left(\boldsymbol{r}_{12}\right)$

This refers to the probable density functions of having the electron 1 and electron 2 at the distance from r_{12} to $r_{12}+d r_{12}$ formulated as [15] $f\left(r_{12}\right)=\int \Gamma\left(r_{1}, r_{2}\right) d r_{2} d r_{1}$ (16)
3.7: inter-particle expectation value $\left\langle r_{12}^{n}\right\rangle$

This is set through [16]
$\left\langle r_{12}^{n}\right\rangle=\int_{0}^{\infty} r_{12}^{n} f_{\left(r_{12}\right)} d r_{12}$
3.8: Standard deviation Δr_{12}

It is defined as [17].
$\Delta r_{12}=\left[\left\langle r_{12}^{2}\right\rangle-\left\langle r_{12}\right\rangle^{2}\right]^{1 / 2}$
3.9: The expectation value of energies

From virial theorem, its expectation values for whole energy of its system are associated with the expectation value of potentially given energy [18].

$$
\begin{equation*}
\left\langle E_{T}\right\rangle=\frac{1}{2}\left\langle V_{T}\right\rangle=-\langle T\rangle \tag{19}
\end{equation*}
$$

Where E_{T} is the intra-shells total energy. The intra-shells expectation value potential energy can be written as
$\left\langle V_{T}\right\rangle=-\left\langle V_{e n}\right\rangle+\left\langle V_{e e}\right\rangle$
Where $\left\langle V_{e n}\right\rangle$ and $\left\langle V_{e e}\right\rangle$ both indicate energies in which the former represent the nuclear attraction energy of the electron while the latter refers to inter-electronic repulsion one which is written as [19].
$\left\langle V_{T}\right\rangle=-Z\left\langle r_{1}^{-1}\right\rangle+\left\langle r_{12}^{-1}\right\rangle$
(21)
3.10: Electronic Density at Nucleus $\boldsymbol{\rho}(0)$

It is written as [20]

$$
\begin{equation*}
\rho(0)=\left[\frac{D\left(r_{1}\right)}{4 \pi r_{1}^{2}}\right]_{r_{1} \rightarrow 0} \tag{22}
\end{equation*}
$$

3.11: Nuclear Magnetic Shielding Constant σ_{d}

It is determined by the equation [21].
$\sigma_{d}=\frac{1}{3} \alpha^{2}\langle\psi| \sum_{i=1}^{N}\left(r_{i}\right)^{-1}|\psi\rangle$
Where α is the fine structure constant and r_{i} represents the distance from the nucleus to the electron (i).

3 Results and Discussion

Tables I and II contain the results of maximum values of $\mathrm{D}\left(r_{1}\right)$ and the maximum values of $f\left(r_{12}\right)$ respectively. The maximum values of $\mathrm{D}\left(r_{1}\right)$ and $f\left(r_{12}\right)$ in 1 s shell and minimum values in 2 p shell for three states as in figure (1), (2) because the probability of finding the electrons increases when the shell close to nucleus. Also, the maximum values of $\mathrm{D}\left(r_{1}\right)$ and $f\left(r_{12}\right)$ for 1 s and 2 s shells in ${ }^{1} \mathrm{~S}$ state and minimum value in ${ }^{3} \mathrm{P}$ state, while for 2 p shell vice versa that is due to Hund's first and second rules. As in figure (1) there are two peaks in 2 s shell, the first one indicates the possibility to find the electron in 1 s shell for small period of time because of penetration phenomenon while the other one refers to the possibility to find an electron in 2 s shell. In addition, when $r_{1}=0$ or $\infty, \mathrm{D}\left(r_{1}\right)=0$, that means that the possibility to find the electron in 1 s shell for small period of time is because of penetration phenomenon while the other one refers to the possibility to find the electron in 2 s shell. In addition, when $r_{1}=0$ or $\infty, \mathrm{D}\left(r_{1}\right)=0$, that means that the possibility to find the electron within the nucleus or away equals zero. in figure (2) when $r_{12}=0$ or $\infty, f\left(r_{12}\right)=0$ which indicates that the possibility to find two electrons in one location or separately equals zero. Tables III and IV contain the results of $\left\langle r_{1}^{n}\right\rangle$ and $\left\langle r_{12}^{n}\right\rangle$ standard deviation and expectation values for three states. If $n=-1$ indicates the maximum value of expectation values in 1 s shell and minimum value in 2 p shell, while for $n=1,2$ vice versa because the expectation value $\left\langle r_{1}^{n}\right\rangle$ represents the distance between electrons and nucleus and the expectation value $\left\langle r_{12}^{n}\right\rangle$ represents the distance between electrons. The standard deviation Δr_{1} and Δr_{12} have the maximum values in 2 p shell and minimum values in 1 s shell due to large distance from nucleus give maximum deviation. The maximum values of $\left\langle r_{1}^{-1}\right\rangle$ and $\left\langle r_{12}^{-1}\right\rangle$ for $1 \mathrm{~s}, 2 \mathrm{~s}$ in ${ }^{1} \mathrm{~S}$ state and the minimum values of $\left\langle r_{1}^{-1}\right\rangle$ in ${ }^{3} \mathrm{P}$ state, for 2 p shell and vice versa. When $n=1,2$ the maximum values for $1 \mathrm{~s}, 2 \mathrm{~s}$ shells in ${ }^{3} \mathrm{P}$ state, for $2 p$ shell vice versa that are compatible with the interpretation of Hund's rules. From Table V that contains the results of expectation values of energies, the maximum values of expectation values of energies in 1 s shell and minimum values in $2 p$ shell. If one comperes among three states, we find the maximum values of energies for $1 \mathrm{~s}, 2 \mathrm{~s}$ shells in ${ }^{1} \mathrm{~S}$ state and minimum values in ${ }^{3} \mathrm{P}$ state, for 2 p shell vice versa that are due to Hund's first and second rules. The ${ }^{3} \mathrm{P}$ state has the largest total energy more than other states. In addition, ${ }^{1} \mathrm{D}$ state is larger than ${ }^{1} \mathrm{~S}$ state as illustrated in figure (3). Therefore, ${ }^{3} \mathrm{P}$ state is considered as ground state and ${ }^{1} \mathrm{D},{ }^{1} \mathrm{~S}$ as excited states. From Table VI which contains the results of the electronic density
at nucleus $\rho(0)$ and the nuclear magnetic shielding constant σ_{d}. Both $\rho(0)$ and σ_{d} are having maximum values in 1 s shell and the minimum values in 2 p shell because $\rho(0)$ depend on $\mathrm{D}\left(r_{1}\right), \sigma_{d}$ depend on $\left\langle r_{1}^{-1}\right\rangle$, for this reason the maximum values of $\rho(0)$ and σ_{d} for $1 \mathrm{~s}, 2 \mathrm{~s}$ shell in ${ }^{1} \mathrm{~S}$ state and minimum values in ${ }^{3} \mathrm{P}$ state, for 2 p shell vice versa.
Table I. The highest value of one-particle distribution functions and correspondent position r_{1} of carbon atom for three states.

shell	The highest value and po- sitions	${ }^{3} \mathrm{P}$	${ }^{1} \mathrm{D}$	${ }^{1} \mathrm{~S}$	
	$\mathrm{D}\left(r_{1}\right)$		3.0149	3.0153	3.0158
		r_{1}	0.1752	0.1739	0.1737
2 s	$\mathrm{D}\left(r_{1}\right)$		0.66359	0.66741	0.67336
		r_{1}	1.2225	1.2204	1.2145
2 p	$\mathrm{D}\left(r_{1}\right)$		0.52861	0.50846	0.47862
		r_{1}	1.2064	1.2233	1.2411

Table II. The highest value of inter-particle distribution functions and correspondent position of carbon atom for three states.

shell	The highest value and po- sitions	${ }^{3} \mathrm{P}$	${ }^{1} \mathrm{D}$	${ }^{1} \mathrm{~S}$
	$f\left(r_{12}\right)$	2.2098	2.2102	2.2107
	r_{12}	0.2957	0.2949	0.2945
2 s	$f\left(r_{12}\right)$	0.41774	0.4198	0.42301
	r_{12}	1.9333	1.9269	1.9142
2 p	$f\left(r_{12}\right)$	0.36688	0.3523	0.33102
	r_{12}	1.9622	2.0004	2.0729

Table III. The one-particle expectation values $\left\langle r_{1}^{n}\right\rangle$ where ($n=$ $-1,1,2)$ and standard deviation of carbon atom for three states.

shell	Expectation values	${ }^{3} \mathbf{p}$		${ }^{1} \mathrm{D}$	${ }^{1} \mathrm{~S}$
		P.w.	Ref. [22]		
1s	$\left\langle r_{1}^{-1}\right\rangle$	5.66438	5.664439	5.66491	5.66558
	$\left\langle r_{1}^{1}\right\rangle$	0.26844	0.268443	0.26840	0.26834
	$\left\langle r_{1}^{2}\right\rangle$	0.09720	0.097199	0.09716	0.09710
	Δr_{1}	0.15854	---------	0.15849	0.15842
2s	$\left\langle r_{1}^{-1}\right\rangle$	0.89678	0.896798	0.90069	0.90742
	$\left\langle r_{1}^{1}\right\rangle$	1.58934	1.589344	1.58225	1.57123
	$\left\langle r_{1}^{2}\right\rangle$	3.05171	3.052065	3.02389	2.97942
	Δr_{1}	0.72505	---------	0.72136	0.71461
2p	$\left\langle r_{1}^{-1}\right\rangle$	0.78351	0.783503	0.76666	0.74078
	$\left\langle r_{1}^{1}\right\rangle$	1.71450	1.714494	1.77201	1.87056
	$\left\langle r_{1}^{2}\right\rangle$	3.74720	3.746799	4.04421	4.59495
	Δr_{1}	0.89871	---------	0.95089	1.04687

Table IV. The inter-particle expectation values where ($\mathrm{n}=\mathbf{- 1 , 1 , 2 \text {) and }}$ standard deviation of carbon atom for three states.

shell	Expectation values	${ }^{3} \mathbf{P}$	${ }^{\mathbf{1}} \mathbf{D}$	${ }^{\mathbf{1}} \mathbf{S}$
	$\left\langle r_{1}^{-1}\right\rangle$	3.50904	3.50948	3.51002
	$\left\langle r_{1}^{1}\right\rangle$	0.39244	0.39237	0.39227
	$\left\langle r_{1}^{2}\right\rangle$	0.1944	0.19432	0.1942
	Δr_{1}	0.20097	0.20090	0.20082
2 s	$\left\langle r_{1}^{-1}\right\rangle$	$\left\langle r_{1}^{1}\right\rangle$	2.57288	0.57539
	$\left\langle r_{1}^{2}\right\rangle$	6.57932		
	Δr_{1}	1.00531	1.00063	0.99213

2 p	$\left\langle r_{1}^{-1}\right\rangle$	0.53861	0.52298	0.4988
	$\left\langle r_{1}^{1}\right\rangle$	2.46803	2.55694	2.71057
	$\left\langle r_{1}^{2}\right\rangle$	7.49442	8.08842	9.18975
	Δr_{1}	1.18459	1.24519	1.35742

Table V. The expectation values for all attraction, repulsion, kinetic and total energies of intra-shells of carbon atom for three states.

shell	Expectation values of energies	${ }^{3} \mathrm{P}$	${ }^{1} \mathrm{D}$	${ }^{1} \mathrm{~S}$
1s	$-\left\langle V_{e n}\right\rangle$	67.97256	67.97892	67.98696
	$\left\langle V_{e e}\right\rangle$	3.50904	3.50948	3.51002
	$-\left\langle V_{T}\right\rangle$	64.46352	64.46944	64.47694
	$\langle T\rangle$	32.23176	32.23472	32.23847
	$-\left\langle E_{T}\right\rangle$	32.23176	32.23472	32.23847
2s	$-\left\langle V_{e n}\right\rangle$	10.76136	10.81152	10.88904
	$\left\langle V_{e e}\right\rangle$	0.57288	0.57539	0.57932
	$-\left\langle V_{T}\right\rangle$	10.18848	10.23613	10.30972
	$\langle T\rangle$	5.09424	5.11806	5.15486
	$-\left\langle E_{T}\right\rangle$	5.09424	5.11806	5.15486
2p	$-\left\langle V_{e n}\right\rangle$	9.40212	9.19992	8.88936
	$\left\langle V_{e e}\right\rangle$	0.53861	0.52298	0.4988
	$-\left\langle V_{T}\right\rangle$	8.86351	8.67694	8.39056
	$\langle T\rangle$	4.43175	4.33847	4.19528
	$-\left\langle E_{T}\right\rangle$	4.43175	4.33847	4.19528

Table VI. The electronic density at nucleus $\rho(0)$ and the nuclear magnetic shielding constant σ_{d} of carbon atom for three states.

Fig. 1: The relation between one-particle radial density distribution function and location r_{1} of carbon atom for three states.

Fig. 2: The relation between inter-particle distribution function and location of carbon atom for three states

Fig. 3: Comparison between total energies of intra-shells of states ${ }^{3} \mathbf{P},{ }^{1} \mathrm{D}$ and ${ }^{1} \mathrm{~S}$ for carbon atom.

4 Conclusions

The one-particle and inter-particle distribution functions, , the expectation values of energies, the nuclear magnetic shielding constant and the electronic density at nucleus are having the maximum values in 1 s shell and the minimum values in $2 p$ shell. In addition, these atomic properties have the highest value for $1 \mathrm{~s}, 2 \mathrm{~s}$ shells in ${ }^{1} \mathrm{~S}$ state and minimum values in ${ }^{3} \mathrm{P}$ state, for 2 p shell vice versa. For expectation values $\left\langle r_{1}^{n}\right\rangle,\left\langle r_{12}^{n}\right\rangle$, where $n=$ -1 its maximum values in 1 s shell and minimum values in 2 p shell. Moreover, the highest value for $1 \mathrm{~s}, 2 \mathrm{~s}$ in ${ }^{1} \mathrm{~S}$ state and minimum values in ${ }^{3} \mathrm{P}$ state and vice versa for $2 p$ shell. When $n=1,2$ the maximum values in $2 p$ shell and minimum values in 1 s shell. In addition, the maximum values for 1 s , 2 s shells in ${ }^{3} \mathrm{P}$ state and minimum values in ${ }^{1} \mathrm{~S}$ state and vice versa for 2 p shell. The ${ }^{3} \mathrm{P}$ state has the highest total energy of intra-shells than ${ }^{1} \mathrm{D},{ }^{1} \mathrm{~S}$ states, and ${ }^{1} \mathrm{D}$ state higher total energy of intra-shells than ${ }^{1} \mathrm{~S}$ state, so ${ }^{3} \mathrm{P}$ state ground state and ${ }^{1} \mathrm{D},{ }^{1} \mathrm{~S}$ are excited states.

Acknowledgements

The authors are thankful to staff of department of Physics for their help in this work.

Conflict of Interest

There was no interest in this study.

References

[1] P. C. Deshmukh and S. Venkataraman (2009), Indian Physics Association, Vol.39, No.2, pp.5-14.
[2] D.R. Hartree (1957), The Calculation of Atomic Structures, WILEY, New York.
[3] A. Szabo and N.S. Ostlund (1989), Modern Quantum Chemistry Introduction to Advanced Electronic Structure Theory, Dover Publications, INC., New York.
[4] S.M. Blinder (1965), Am. J. Phys., Vol. 33, No.6, pp. 431-443.
[5] S. AL-Methhej and Q. AL- Khafaji (2014), J. of Kufa Phys.Vol.6, No.1, pp.119128.
[6] H. Friedrich (2006) Theoretical Atomic Physics, 3rd ed., Springer, Berlin.
[7] C. C. J. Roothaan (1951), Rev. of modern Phys., Vol. 23, No. 2, pp. 69-89.
[8] C. Slater (1930), Phys. Rev. Vol. 36 pp. 57-64.
[9] M. G. Bhowon, S. J. Laulloo, H. Li K. Wah and P. Ramasami (2012), Chemistry for Sustainable Development, Springer, Dordrecht.
[10] R.J. Dosh (2014), J. of Kufa Phys. Vol. 6, No.1, pp. 107-111.
[11] T. Koga and H. Matsuyama (2007), J. Theo. Chem. Acc.,Vol. 118, No. 6, pp.931-935.
[12] W.A. Ameen, A.S. Matuk and K.H. AL-Bayati (2013), J. of Baghdad Science, Vol. 10, No. 4, pp. 1218-1222.
[13] J.B. Boyd (1977), Can. J. Phys., Vol. 55, pp. 452-455.
[14] K.H. AL-Bayati, N. AL- Tamimei and A.K. Ahmad (2006), J. Um-Salama Science, Vol.3, No. 2, pp. 246-253.
[15] C.A. Coulson and H.A. Neilson (1961), Proc. Phys. Soc., Vol.78, pp. 831-837.
[16] K.H. AL-Bayati, B.H. AL-Asaad and S.A. Hasson (2009), J. Um- Salama Science, Vol.6, No. 1, pp. 61-66.
[17] R.J. Dosh and Q.S. AL-Khafaji (2013), J. of Kufa Phys. Vol. 5, No.1, pp. 91102.
[18] C. L. Ladera and E. A. Pilar León (2010), Lat. Am. J. Phys. Educ.,Vol.4, No. 2, pp. 260-266.
[19] Q. S. AL-Khafaji, S. A. AL-Shebly, H. Bilal and N. H. Ali (2016), J. Adv. Phys., Vol. 5, pp. 1-4.
[20] K.H. AL-Bayati, A.K. Taki and M.N. Murshed (2007), J. Um- Salama Science, Vol. 4, No. 2, pp. 301-304.
[21] G. Malli and CH. Froese (1967), Int.J. of Quant. Chem., Vol. 15, pp. 95-98.
[22] S.L. Saito (2009), At. Data and Nucl. Data Tables, Vol. 95, pp. 836-870.

Funding

By the authors themselves.

