

Copyright © 2023 by authors and IBII. This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

American Journal of Advanced Research, 2024, 8–1

July. 2024, pages 01-06

doi: 10.5281/zenodo.12210679

http://www.ibii-us.org/Journals/AJAR/

ISBN 2572-8849 (Online), 2572-8830 (Print)

Automata Architect – a Game for Pattern Play

Javier Escobedo1, Ling Xu2,*

1,2 Department of Computer Science and Engineering Technology, University of Houston – Downtown, USA.

*Email: xul@uhd.edu

Received on 02/22/2024; revised on 06/20/2024; published on 06/21/2024

Abstract

This paper introduces our project for developing a serious computer game for cellular automaton patterns. Cellular automata as models

of complexity have been studied by researchers in a wide variety of subjects including mathematics, physics, biology, and computer

science. In this project we focus on the patterns from one-dimensional cellular automata and intend to construct a platform for game

play that offers players experience for exploring abstract aesthetic patterns. At the same time, the game can also be used as a simulator

for cellular automaton patterns by manipulating the rules and settings.

Keywords: Game Development, Cellular Automata, Procedural Textures, Serious Game

1 Introduction

With the growth of video game industries, computer game development

has attracted attention and interest from students and educators in high

education institutions. For the preparation of future professionals, many

universities have integrated computer game development courses in Com-

puter Science curriculum [14, 15, 22]. Most common commercial game

genres, such as real-time strategy (RTS), first-person shooter (FPS), role-

playing (RPG), action, adventure, and simulation games [2], serve for en-

tertainment purposes. Due to their popularity, they are also commonly se-

lected topics for student course/research projects. However, the role of

games as a knowledge bearer is often ignored [7]. As Adams [1] pointed

out, “games must seek to do more than provide fun”. For certain topic-

specific content such as educational applications and scientific simula-

tions, commercial games may not be appropriate [16], whereas serious

games can blend entertainment and learning and maximize player motiva-

tion and engagement [5]. Serious games usually refer to games “used for

training, advertising, simulation, or education that are designed to run on

personal computers or video game consoles” [20]. Figure 1 shows two

examples of serious games, for kids’ time learning and medical simula-

tions, respectively. We are interested in serious games for game develop-

ment education and practice for a few reasons. First, in this project we

expect to apply the knowledge from game classes to construct a game pro-

totype. It does not have to contain realistic visual effects or sophisticated

designs for stories and challenges but focus on the implementation of a

basic game interface and core mechanics. The complexity and scale of the

development work should be feasible for undergraduate students. Second,

Figure 1. Examples of serious games. Upper: a game [21] for kids to learn

reading clock and telling time. Lower: SimX [18, 19], a VR simulator for

emergency care (SimWars).

http://www.ibii-us.org/Journals/AJAR/
mailto:xul@uhd.edu

J. Escobedo et al. / American Journal of Advanced Research 2024 8(1) 1-6

2

we want to invoke the thoughts and explorations of applications for seri-

ous games – as computer science practitioners, what can we contribute to

education communities? Last but not least, it would be beneficial to inte-

grate the crossdisciplinarity subjects in a project to encourage students to

think deeply and critically beyond the intrinsic circle of computer science.

In this project, we developed a serious game that focuses on abstract art

and educational applications. The algorithm is based on the mechanism of

cellular automaton (CA). A cellular automaton is a dynamic model gov-

erned by mathematical rules and algorithms that can be used to simulate a

wide range of complex phenomena [23, 24]. Here we focus on the abstract

aesthetic patterns created from cellular automata. The game offers two

game play modes, for level challenges and free sandbox pattern play. The

former challenges the player’s skills for matching the rules with the given

patterns. The later provides control handles to the player for exploring

procedural settings and creating patterns freely.

Our work makes the following contributions. First, we provide an interac-

tive platform for players to explore procedurally generated abstract aes-

thetic patterns. It can help the player for learning the topics in related areas

including mathematics, computer science, and abstract arts. At the same

time, our game is also a simulator for cellular automata. Compared with

existing tools it is lightweighted without parameter specifications. The

pattern matching features and functions for hints make the rules straight-

forward to understand. In addition, through our introduction to the design

and development of this game, we expect our experience can be useful for

CS students, educators, and game developers, and invoke more attentions

and interest about serious games in computer science education. The rest

of the paper is organized as follows. Following the introduction, the sec-

tion of Background will introduce procedurally generated pattens and cel-

lular automata. Next, we introduce the details of the game design and im-

plementation. At the end we conclude the work and propose the future

tasks.

2 Background

This section reviews the background of procedural methods for pattern

generation. We especially focus on the mechanism of cellular automata.

2.1 Procedural Textures

Textures and pattern features play an important role in abstract art due to

their influence on the human perception and emotions [9, 17]. How to gen-

erate textures (and patterns) has been an active research topic in the areas

of computer graphics. Existing methods can be generally classified into

three categories: example-based, simulation-based, and procedural ones

[10]. Example-based methods require existing texture samples to synthe-

size new ones usually in larger scales. Simulation-based methods intend

to simulate the patterns from natural phenomena such as crystal textures

based on their forming processes and mechanisms. Procedural methods

[12, 26, 27] use parameter-controllable algorithms or models to generate

textures. The results can be controlled and varied by manipulating the pa-

rameters. Compared with other methods, procedural methods do not re-

quire texture samples or priori knowledge on the formation of natural pat-

terns, but basic understanding of rules and parameter settings. They usu-

ally provide flexibility and convenience for generating a wide variety of

patterns with low cost for time and human labor.

According to human perception of the procedural textures, procedural

methods can be further classified into a few categories for generating

structured textures, unstructured ones, and those needing filtering and post

processing [6]. In this project we are more interested in structured textures

with appearance of regularity from the method of cellular automata, for

the regular structures used in the game for pattern play, and the target of a

serious game for learning and practicing cellular automaton rules.

In addition to cellular automata, there are other procedural methods for

generating structured textures, such as L-systems. L-system is a string re-

writing system. The basic idea is to define a complex object from a simple

initial object by applying the replacement rules for a few iterations [4, 11,

20]. For example, as shown in Figure 2, the process starts from a square

defined by a string F + F + F + F, where F represents the action of moving

forward a step of length (i.e., drawing an edge), and + represents turning

right by δ = 90°. In each later iteration, we can apply the replacement rule

Figure 2. Starting from a square (a), a complicated pattern (d) can be generated

after 3 replacement iterations. Image from [11].

Figure 3. Fractal patterns from L-systems. Image from [11].

Automata Architect – a Game for Pattern Play

3

F → F + F − F − F F + F + F – F. Finally, a complex pattern is generated

after three iterations. Different patterns can be generated given different

initial strings and replacement rules (as shown in Figure 3).

2.2 Cellular Automata

A cellular automaton is a discrete model that contains a grid of cells, in

which each cell evolves through a few time steps according to simple local

rules based on the states of other cells in its neighborhood [24]. The sim-

plest form of grid is a one-dimensional line, though higher dimensions are

possible for cellular automata. In the one-dimensional form, also called

elementary cellular automata, each cell has two possible values (0 or 1),

and its state in the next generation after a time step is decided by a rule

with inputs of its current state and the neighboring cells’ states. Different

rules define how the neighborhood affects the updated state of a cell. For

example, in Figure 4, rule 30 tells eight possible states that a cell (at the

center) may evolve in case of eight states of its neighborhood (i.e., its own

state, and the states of its left and right cells). To be more specific, for

instance, the leftmost scenario shows a cell at the center in black (or 1)

with two black neighbors (at the top row) will evolve to a white (or 0) cell

(at the lower row) in the next generation. Based on this rule, if we display

the next generation of cells below the prior generation, we can get a matrix

of grids that show the states (black or white) of each cell, forming some

interesting patterns. Figure 4 shows the initial grids with a single black

cell at the center (in the first row) and the evolution in 15 steps (from row

2 to row 16).

Since different rules can generate different patterns (as shown in Figure

5), how to relate a rule with its corresponding resulting pattern is a chal-

lenge – this is also the challenge for our game players for their exploration

and fun.

3 Game Design and Implementation

3.1 Game Overview

Automata Architect is a puzzle-simulator game in which the player must

manipulate automata rules on a grid-based cellular automaton to achieve

a specified result. The game uses elementary cellular automata rules to

determine how the cells evolve with each step. The game offers varying

levels of difficulty, a sandbox mode, and an in-depth help system for edu-

cating and assisting players throughout the game.

The game falls under the puzzle, simulator, and educational genres. It is

targeted toward players who enjoy logic-based puzzles and have an inter-

est in learning about computational theory and cellular automata. The

game caters to both casual and dedicated players, but specifically to those

who are willing to trudge through a sizable learning curve. The game chal-

lenges players to solve complex grid-based problems. It provides a simu-

lation environment to study automata patterns, all while ideally teaching

players about computational theory and cellular automata.

Automata Architect has a minimalist and visually appealing design that

focuses on grid-based cellular automaton. The game interface is clean and

straightforward, with easy-to-understand icons and buttons. The visual

style of the game maintains a balance between simplicity and complexity,

allowing players to focus on the intricate patterns and mechanisms in-

volved in solving puzzles or generating odd patterns while still immersing

them in a visually engaging environment. The animations of the cellular

automaton running are smooth and mesmerizing, encouraging players to

experiment and observe the emerging patterns. The overall feel of the

game is intellectually stimulating and rewarding, as players progress

through increasingly challenging levels or encounter something unex-

pected, all while gaining a deeper understanding of the concepts behind

cellular automata and computational theory.

We use Processing for the development tool. Processing is an open-

source computer language and integrated development environment [13].

We selected Processing for the benefits mentioned by Huang et al. [27].

As a popular tool “used by students, artists, designers, architects, and re-

searchers for learning, prototyping, and production” [13], the learning

curve for Processing is smoother compared with others such as XNA and

Unity. Since our game focuses on greyscale geometric patterns, we pre-

fer simpler and shorter code to render images in Processing. In addition,

Figure 5. Different rules and their patterns. Image from [24] and [25].

Figure 4. Rule 30 and its pattern. Image from [24] and [25].

J. Escobedo et al. / American Journal of Advanced Research 2024 8(1) 1-6

4

the source code for our game is straightforward for reading and modifi-

cations in the IDE of Processing, making future augmentations and

changes convenient.

Automata Architect benefits from its simplicity and doesn't require a

high-end setup, which makes it accessible to a wide range of players.

The game is designed to run smoothly on most current-generation per-

sonal computer hardware. It doesn't require a cutting-edge GPU or an

overly powerful system. Instead, it focuses on delivering enjoyable

gameplay, even on mid-range systems.

3.2 Gameplay and Mechanics

Upon initiating the game, players are greeted with an engaging title se-

quence where a mesmerizing background animation of a cellular automa-

ton is running. This background animation carries on as the main menu is

drawn on the screen. The main menu (Figure 6) allows access to the tuto-

rial section (Figure 7), the sandbox mode (Figure 8), the level selection

menu (Figure 9), or exiting the game altogether.

3.2.1 Game Modes

The game provides three modes: tutorial mode providing practices with

instructions, sandbox mode for flexible gameplay, and level mode that

gives different difficult levels of challenges.

The tutorial is made up of tutorial states, each of which draws something

different to explain the game’s mechanics. All throughout the tutorial,

players have the option of going back to the main menu via the back arrow

in the lower left corner.

In the sandbox mode, the player can toggle cells, branches, render mode,

rules, and initial conditions. They can select any rule and pick their own

configuration of cells, among other things. The game will immediately run

and generate the pattern after any change to the automaton is made, so

players can observe the generated pattern. To customize the display of the

patterns, the player can resize the automata by pressing the left or right

arrow keys. The option to return to the main menu is always available as

in the mode for level play.

The level mode contains the primary functions for gameplay experience.

After entering the interface for levels, the player is offered three sections

of levels that they can navigate through. Each section contains 30 levels,

thus 90 levels in total. Players can start playing from level 1 through 90

by leveling up, or select and jump onto any level to start an unknown chal-

lenge. Generally, a higher level gives more intricate patterns and complex

rules that requires the player to better understand automaton rules to ma-

nipulate and match patterns. While playing the game, players can opt to

switch back to the main menu or level selection at any time by clicking on

the designated icon on the lower left. Alternatively, they can refresh the

grid and start with a clean slate or move to the next or previous level.

Figure 9. The interface for the level mode.

Figure 6. Main menu of Automata Architect.

Figure 8. The interface for the sandbox mode.

Figure 7. The interface for the tutorial mode.

Automata Architect – a Game for Pattern Play

5

3.2.2 Level Designs

The design of the levels is intricately woven around the principles of cel-

lular automata, computational theory, and logic puzzles. Each level un-

folds a new set of automaton rules and a distinctive target pattern for play-

ers to unravel. The foundational query each level poses to the player is,

“Which set of rules will generate the target pattern?”. In the beginning

stages, levels are designed with simplicity to help users understand the

fundamental mechanics of the game. For the most part, they feature

straightforward automaton rules and clear-cut target patterns, making it

easier for players to observe the links between the rules and their outcomes

on the grid. For the first 30 levels. players are also shown what rule applies

on the cell that their mouse hovers over, making it easier to choose the

correct rule. As players progress, the complexity gradually amplifies. Mid-

level stages introduce moderately complex automaton rules and patterns,

thereby pushing players to broaden their strategic and logical thought pro-

cess. The final stages are randomized to challenge the player's comprehen-

sion of the game mechanics and their ability to implement an astute strat-

egy to achieve the target patterns. These levels present intricate rules and

patterns that are not immediately apparent, thus demanding a seasoned

understanding of cellular automata and an inventive approach to solving

the puzzle.

Moreover, the levels are not solely developed to be harder as the sequences

advance, they are also intended to be educational and immersive. Each

level can be seen as a step forward in the learning curve, subtly teaching

players about different automata patterns, behavior, and rules as they play

along. For any given level, different players may approach the puzzle from

various angles and employ different strategies, making each gameplay

unique. This quality not only increases the game's replay value but also

stimulates player creativity and problem-solving skills.

The player’s progression is marked by how many levels have been com-

pleted with the fewest moves possible. A move is counted whenever the

rule selected is different from the previous rule selected. If the moves per-

formed exceed the minimum moves required and the level was completed,

then that level is treated as a partially completed level. In the level selec-

tion menu, fully completed levels are marked in black, partially completed

levels in grey, and incomplete levels in white.

Upon completing all levels, the main menu will present players with an

additional feature, the endless levels. These levels are designed with an

infinite nature, providing an unbounded gameplay experience. Unlike the

finite levels, these do not conclude after reaching a certain point, but con-

tinue indefinitely, with each new level posing a fresh set of challenges.

The striking feature of these endless levels is their dynamic scaling and

randomized initial conditions. As players navigate through and solve each

level, the size of the cellular automaton incrementally increases with a dif-

ferent initial configuration. This progress in scale corresponds with an el-

evation in complexity, providing players with increasingly intricate puz-

zles to solve. The emphasis in these limitless levels is placed upon sus-

tained engagement and problem-solving prowess rather than reaching a

definitive end. This allows for an extended play value as well as fostering

deeper understanding and proficiency in handling the cellular automaton.

This endless play feature amply rewards continued interaction, with each

solution discovered and each level surpassed serving as a gratifying

achievement in the player's limitless journey through Automata Architect.

3.2.3 Game Controls

The primary method of controlling the game is through mouse clicks on

the on-screen user interface (as shown in Figure 10), which grants an in-

tuitive and user-friendly design. At the right of the screen, the various

automaton rules are represented by clickable boxes next to the corre-

sponding rule. Players select or deselect these rules by clicking on them,

causing an immediate effect on the grid. Other buttons also include icons

for returning to the main menu, proceeding to new levels, or refreshing

the grid to start anew. In sandbox mode, players can manually change the

setup of automaton cells by clicking within the grid, turning cells ‘on’ or

‘off’ as desired. Players can also use the right and left arrow keys to

resize the automata and use the up and down key to increment or decre-

ment the current rule. There are also buttons for randomizing the rules,

randomizing initial conditions, and altering automaton settings, all of

which can be found at the bottom of the screen. Also, by using a mouse

wheel the player can zoom in to view their pattern more closely, they

may also click and drag to move around while zoomed in, which offers

fluid control over what the player can see.

To further lighten the learning curve, the game includes tooltips that pro-

vide clear, concise explanations whenever a player hovers their mouse

over a particular rule or button. The tooltips are designed to seamlessly

blend with the gameplay without disrupting the immersive experience.

They provide real-time explanations of both frequently used and less fa-

miliar game controls, making it easy for the players to understand the sig-

nificance of each button and rule.

The game puzzles offer a blend of easy to extremely complex automata

rules and target patterns. The puzzles require logical thinking and strategic

manipulation of the automaton rules. The complexity of each level is

mostly dependent on the target pattern, as it requires intricate knowledge

of the automaton rules to produce that specific pattern. Players must ex-

periment and find the right configuration of rules to reach the target pat-

tern. Since the target pattern and the player’s pattern are overlayed with

each other, a puzzle (or level) is solved when the target pattern and the

player’s pattern are the same.

Most of the play flow involves using the mouse to click things on the pro-

gram screen. While playing a level, some players will usually observe the

target pattern before selecting any rules while others will randomly see

what works. When the target pattern is generated, the level is complete,

and the game will take the player to the next level.

Figure 10. The interface of a level.

J. Escobedo et al. / American Journal of Advanced Research 2024 8(1) 1-6

6

3.3 Game Art

While Automata Architect utilizes simplicity in its visually appealing de-

sign, there are art assets that enhance the game's quality. These assets in-

clude different icons that denote various functions, such as menu buttons

for exiting the game or icons for advancing to the next level, and symbols

indicating automaton rules. Minimalistic designs are used to represent

these icons, ensuring they are easily identifiable, yet unobtrusive. The

backdrop of the game also acts as an art asset, composed of different com-

binations of cellular automata patterns which create an appealing and dy-

namic background display. It should be noted that no external game assets

like images, sprites, or even external code was used. All icons and patterns

were made using the functionality that Processing [13] provides.

The art style of Automata Architect is a fusion of abstract minimalism and

intricate geometrical design, much inspired by cellular automata princi-

ples themselves. The use of stark black and white for the cells, along with

shades of grey for overlaying two automatons over each other, gives a

monochromatic theme that intensifies the focus on patterns and formations

rather than distractions from colors. The rationale behind this decision is

to maintain the association with classical cellular automata simulation,

typically presented in binary colors, and to stay true to the mathematical

roots of the concept. The simple geometrical shapes and patterns that keep

changing based on the rules provide a sense of order and randomness at

the same time, making the gaming experience captivating. The patterns

can range from repetitive stripes to intricate fractals, all formed by a sim-

ple grid of black and white squares. This interaction between simplicity

and complexity is the core focus of the visual style of Automata Architect.

The real highlight of the game's art is in the fluid animations of cellular

automaton patterns forming, transforming, and shifting across the grid.

The use of elementary cellular automata rules in the game means the

smallest shifts in rules can lead to drastically different animations. Each

time the automaton runs, the resulting patterns move and evolve across the

screen, creating a relaxing and intellectually stimulating spectacle. By

simply activating a rule or setting up cell configurations in the sandbox

mode, the player can set off an awe-inspiring chain of movement and an-

imation. The entire visual interactive experience created through running

cellular automata infuses life into the simple black and white grid, show-

casing the full potential of this minimalist art style.

4 Conclusion and Future Work

Procedural textures often appear in abstract arts. However due to chal-

lenges to connect rules and generated patterns, using procedural textures

for art applications is not an easy task. In this paper we introduce our work

for developing Automata Architect, a serious computer game for explor-

ing cellular automaton rules and patterns. In this game, we designed a few

interactive challenges to motivate the player’s observation, interpretation,

and memorization abilities, thus helping the player get familiar with the

working mechanism of procedural methods. We expect this work can in-

voke the interest from players for learning procedural patterns and crea-

tivity of developing applications for computer generated arts. A few pos-

sible extensions may be made in our future work. For example, to provide

a function for player free sketched patterns. We also expect to develop an

integrated system for multiple procedural methods such as Voronoi dia-

grams [3] and L-systems.

Funding

This work has been supported by the Organized Research and Creative Activities

(ORCA) Program of University of Houston-Downtown.

Conflict of Interest: none declared.

References

[1] E. Adams. Will computer games ever be a legitimate art form?. Journal of Media

Practice. 7. 10.1386/jmpr.7.1.67/1. 2006

[2] E. Adams, Fundamentals of Game Design (3rd edition). Publisher: New Riders.

2014.

[3] F. Aurenhammer. Voronoi diagrams—a survey of a fundamental geometric data

structure. ACM Comput. Surv. 23, 3 (Sept. 1991), 345–405.

https://doi.org/10.1145/116873.116880

[4] P. Bourke. L-System manual. http://paulbourke.net/fractals/lsys/

[5] A. De Gloria, F. Bellotti, and R. Berta. Serious Games for education and training.

International Journal of Serious Games. 1. 10.17083/ijsg.v1i1.11. 2014.

[6] J. Dong, J. Liu, K. Yao, M. Chantler, L. Qi, H. Yu, and M. Jian. Survey of Pro-

cedural Methods for Two-Dimensional Texture Generation. Sensors 20, no. 4:

1135. https://doi.org/10.3390/s20041135. 2020.

[7] I. Gintere. Towards a new digital game of contemporary aesthetics: research and

knowledge transfer. Society. Technology. Solutions. Proceedings of the Interna-

tional Scientific Conference. 1. 10.35363/ViA.sts. 2019.14.

[8] Y. Huang, T. Zhang, and L. Xu. The Development of a Game with Applications

of Object-oriented Programming Concepts. American Journal of Advanced Re-

search, 2(1), 7–13. https://doi.org/10.5281/zenodo.1407482. 2018.

[9] E. Kim, S. Kim, H. Koo, K. Jeong, and J. Kim. Emotion-Based Textile Indexing

Using Colors and Texture. Lecture Notes in Artificial Intelligence (Subseries of

Lecture Notes in Computer Science). 3613. 1077-1080. 10.1007/11539506_133.

2005.

[10] H. Kim, J. Dischler, and H. Rushmeier & B. Benes. Edge-based procedural tex-

tures. The Visual Computer. 37. 10.1007/s00371-021-02212-4. 2021.

[11] P. Prusinkiewicz and J. Hanan. Lindenmayer Systems, Fractals, and Plants. Lec-

ture Notes in Biomathematics.1989.

[12] P. Prusinkiewicz and A. Lindenmayer. The Algorithmic Beauty of Plants.

10.1007/978-1-4613-8476-2. 1996.

[13] C. Reas and B. Fry. Processing: A Programming Handbook for Visual Design-

ers, Second Edition. MIT Press. ISBN: 0-262-02828-X. 2014.

[14] T. Roden and R. LeGrand. Growing a computer science program with a focus

on game development. SIGCSE 2013 - Proceedings of the 44th ACM Technical

Symposium on Computer Science Education.

[15] C. Ron, M. Krembs, A. Labouseur, and J. Weir. Game design & programming

concentration within the computer science curriculum. In Proceedings of the

36th SIGCSE technical symposium on Computer science education (SIGCSE

'05). Association for Computing Machinery, New York, NY, USA, 545–550.

https://doi.org/10.1145/1047344.1047514

[16] M. Rüth and K. Kaspar. Commercial Video Games in School Teaching: Two

Mixed Methods Case Studies on Students' Reflection Processes. Frontiers in psy-

chology, 11, 594013. 2021. https://doi.org/10.3389/fpsyg.2020.594013.

[17] A. Sartori, B. Senyazar, A. Akdag Salah, A. Salah, and N. Sebe. Emotions in

Abstract Art: Does Texture Matter?. 9279. 10.1007/978-3-319-23231-7_60.

2015.

[18] SimX Featured at SAEM SimWars. https://youtu.be/torkeVv1qok

[19] SimX: Virtual Reality Medical Simulation. https://www.simxvr.com/

[20] T. Susi, M. Johannesson, and P. Backlund. Serious Games - An Overview. 2015.

[21] A telling time game for kids. https://www.education.com/game/telling-time-

quiz/

[22] D. Vlachopoulos and A. Makri. The effect of games and simulations on higher

education: a systematic literature review. Int J Educ Technol High Educ 14, 22

(2017). https://doi.org/10.1186/s41239-017-0062-1

[23] S. Wolfram. Cellular automata as models of complexity. Nature 311, 419-424,

1984.

[24] S. Wolfram. Cellular Automata and Complexity: Collected Papers (1st ed.).

CRC Press, 1994. https://doi.org/10.1201/9780429494093

[25] Wolfram MathWorld. https://mathworld.wolfram.com/CellularAutomaton.html

[26] L. Xu and D. Mould. Magnetic Curves: Curvature-Controlled Aesthetic Curves

Using Magnetic Fields. 1-8. 10.2312/COMPAESTH/COMPAESTH09/001-

008. 2009.

[27] L. Xu and D. Mould. Modeling dendritic shapes - using path planning. 29-36.

2007.

http://paulbourke.net/fractals/lsys/
https://doi.org/10.3390/s20041135
https://doi.org/10.5281/zenodo.1407482
https://doi.org/10.1145/1047344.1047514
https://doi.org/10.3389/fpsyg.2020.594013
https://youtu.be/torkeVv1qok
https://www.simxvr.com/
https://www.education.com/game/telling-time-quiz/
https://www.education.com/game/telling-time-quiz/
https://doi.org/10.1186/s41239-017-0062-1
https://doi.org/10.1201/9780429494093
https://mathworld.wolfram.com/CellularAutomaton.html

	1 Introduction
	2 Background
	2.1 Procedural Textures
	2.2 Cellular Automata

	3 Game Design and Implementation
	3.1 Game Overview
	3.2 Gameplay and Mechanics
	3.3 Game Art

	4 Conclusion and Future Work
	Funding
	References

